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Abstract A growing number of marine fungi are the
sources of novel and potentially life-saving bioactive
secondary metabolites. Here, we have discussed some of
these novel antibacterial, antiviral, antiprotozoal com-
pounds isolated from marine-derived fungi and their
possible roles in disease eradication. We have also dis-
cussed the future commercial exploitation of these
compounds for possible drug development using meta-
bolic engineering and post-genomics approaches.
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Introduction

The success stories in marine biotechnology are far fewer
than for other commercial biotechnology. Marine
biotechnology is defined by Zilinskas et al. [168] as ‘‘the
application of scientific and engineering principles to the
processing of materials by marine biological agents to
provide goods and services’’. In 1985, Colwell [30] wrote
‘‘There are several reasons for the lack of development
in the area of marine pharmaceuticals...’’. The difficulties
of retrieving a ‘‘sustained, reliable’’ harvest of a marine
organism, insufficient quantities of material to allow for
study completion, and difficulties culturing marine

organism in the lab were cited. These problems often still
exist today, two decades later.

The marine environment is a rich source of both
biological and chemical diversity, where it has been
reported that oceans contain nearly 300,000 described
species, representing only a small percentage of the total
number of species that have to be discovered [98, 129,
165]. The oceans comprise more than 70% of the Earth’s
surface, and each drop of water taken from the ocean
will contain microbial species unknown to humans in a
9:1 ratio [31]. The ocean represents a rich resource for
ever more novel compounds with great potential as
pharmaceutical, nutritional supplements, cosmetics,
agrichemicals, and enzymes, where each of these marine
bioproducts has a strong potential market value [48, 49,
77].

Almost all forms of life in the marine environment
e.g.—algae, sponges, corals, ascidians have been inves-
tigated for their natural products content [46, 47]. A lot
of structurally and pharmacologically important sub-
stances have been isolated with novel antimicrobial,
antitumor and anti-inflammatory properties [19, 43, 106,
107, 136, 141]. As interests have turned to marine
microorganisms, the fungi have began to be recognized
as a likely source of potentially useful natural products,
following the very little attention they received from
natural products chemists. According to Fenical and
Jensen [50], only 15 metabolites were discovered
throughout 1992. Recently marine fungi have proved to
be a rich source of bioactive natural products [1, 5, 6, 22,
23, 64, 73, 75, 82, 91, 95, 117, 139, 152, 153, 157, 158,
163]. Most of these micro-organisms grow in a unique
and extreme habitat and therefore they have the capa-
bility to produce unique and unusual secondary
metabolites. It is believed that the metabolites possibly
act as a chemical defence as an adaptation of fungi
competing for substrates [50, 51]. According to Jensen
and Fenical [69], the production of these unique sec-
ondary metabolites by marine fungi are possibly because
of adaptation to a very distinct set of environmental
pressures.
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Fungi growing in the sea can be grouped into obligate
and facultative marine fungi [61]. Kohlmeyer [76]
defined obligate marine fungi as those ‘‘that grow and
sporulate exclusively in a marine or estuarine habitat;
facultative marine are fungi from freshwater or terres-
trial areas also able to grow in the natural marine
environment’’.

To date, more than 272 new compounds have been
isolated from the marine fungi and the number of com-
pounds is on the increase [22]. Marine fungi have proven
to be a rich and promising source of novel anticancer,
antibacterial, antiplasmodial, anti-inflammatory and
antiviral agents [2, 38, 39, 49, 53, 66, 79, 85, 88, 127, 137,
149, 157]. Most of these metabolites are analogues of
those discovered previously from terrestrial fungi [39].

Marine fungal-derived compounds such as sargassa-
mide, halimide and avrainvillamide have shown selective
inhibition of cancer cell lines, and shown in vivo activity
in preclinical models (P-388 lymphocytic leukaemia)
(http://www.cancer.ucsd.edu/summaries/wfenical.asp).
Two of the above potential drugs have been licensed to
the pharmaceutical industry and are in preclinical
development (http://www.cancer.ucsd.edu/summaries/
wfenical.asp). In addition, two classes of metabolites
have been isolated from unidentified fungi obtained from
the marine sponge Jaspis, known as the source of the
cyclic peptide jaspamide [34]. The first class comprises
chlorinated sesquiterpenes, chloriolins A, B and C [25],
which are related to coriolin B and dihydrocoriolin C,
previously isolated metabolites of the terrestrial wood-
rotting fungus Coriolus consors [115]. Although the
chloriolins were not founds to be active in the disease-
oriented screen of the National Cancer Institute (NCI),
coriolin B is cytotoxic against the T-47D human breast
and SNB-75 central nervous system tumor cell lines [39].

In this review, we elucidate the bioactive metabolites
isolated from marine fungi that have shown in vivo or in
vitro activity against bacterial, viral, protozoan and
fungal infections. We also discuss the future scope and
prospects of commercial biotechnological production of
these natural products using metabolic engineering/sys-
tems biology approaches.

Antibacterial compounds from marine fungi

There is a need for the discovery and development of
new classes of antibacterial compounds, due to recent
trends in antibiotic resistance among different strains of
bacteria (e.g. methicillin-resistant Staphylococcus aureus
and vancomycin-resistant Enterococcus), which are
causing serious problems in the containment of infec-
tious diseases [32, 42, 74, 114, 120, 147, 164]. Therefore,
there is an increasing need to develop new antibacterial
compounds due to emerging antimicrobial resistance
[29]. Marine fungi have been a source of diverse anti-
bacterial compounds e.g. 14, 15-secocurvularin, hirsut-
anol-A etc [3, 161]. In this section, we discuss natural
products from marine fungi (see Table 1) that have

shown promising antibacterial properties, and could
provide further cues for clinical trials.

Pestalone, a new chlorinated benzophenone
compound isolated from the marine fungus Pestalotia
sp. showed potent antibiotic activity against methi-
cillin-resistant S. aureus (MIC=37 ng/ml) and
vancomycin-resistant Enterococcus faecium (MIC=
78 ng/ml), indicating that it could be evaluated further
in advanced models of infectious disease [36] (Fig. 1).
Interestingly, this compound was produced only
when a unicellular marine bacterium strain CNJ-328
was co-cultured in a fungal fermentation, suggesting
that the production of this antibiotic is initiated by
bacterial competition [36].

Speradine A, a congener of cyclopiazonic acid with a
1-N-methyl-2-oxindole ring, isolated from the marine
fungus Aspergillus tamarii, showed antibacterial activity
against Mycrococcus luteus (MIC 16.7 lg/ml) [155].

Zopfiellamide A, a class of compound belonging to
pyrrolidinone derivatives isolated from the facultative
marine ascomycete Zopfiella latipes, inhibits gram-posi-
tive Bacillus brevis, Bacillus subtilis, B. licheniformis,
Corynebacterium insidiosum, Micrococcus luteus, Myco-
bacterium phlei, Arthrobacter citreus and Streptomyces
sp. and gram-negative, Acinetobacter calcoaceticus with
minimal inhibitory concentrations ranging between 2
and 10 lg/ml [38].

Table 1 provides further information about natural
products isolated from marine fungi showing antibac-
terial activities. Chemical structures of some of the
antibacterial compounds have been elucidated in Fig. 1.

Antiviral compounds

According to the UNAIDS 2004 report (http://
www.unaids.org/bangkok2004/report html), HIV is
causing havoc worldwide. Around 5 million people have
been infected with HIV in 2003 alone, which is the
greatest in a year since the start of the epidemic. Glob-
ally, the number of patients suffering from HIV has risen
to 38 million in 2003. The epidemic is expanding rapidly
in parts of Asia, Sub-Saharan Africa, Eastern Europe
and Central Asia. Herpes simplex virus (HSV) is well
known for its ability to cause lesions near the initial site
of infection [135]. In the USA alone, there has been a
rise of HSV2 correlated with genital infection by almost
30% since 1970. There has been a worldwide increase in
HSV-1 associated genital herpes, and it is clear that it
helps in the transmission of other sexual diseases like
HIV [28, 134].

The search for antiviral compounds from marine
fungi has yielded some promising results. Compounds
like equisetin, phomasetin and integric acid have shown
significant anti-HIV activities in bioassay based experi-
ments [157]. For example, Sansalvamide A, a cyclic
depsipeptide isolated from the marine fungus Fusarium
sp. was found to inhibit the topoisomerase of the path-
ogenic poxvirus Molluscum contagiosum (MCV) by
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Table 1 Antibacterial compounds isolated from diverse marine fungi

Metabolite(s) Source Class of
compound

Activity MIC (minimum
inhibitory concentration)

Reference

Guisinol Emericella unguis
(obtained from a mollusc)

Depside Staphylococcus aureus [121]

Lunatin (1)
Cytoskyrin A (2)

Curvularia lunata (isolated
from the sponge
Niphates olemda)

Anthraquinone S. aureus (Zones of inhibition for
Lunatin and Cytoskyrin are
both 8.5 and 10.0 mm in 5 and
10 lg/disk respectively)Escherichia
coli (9.0 and 11.0 mm zone inhibition
in 5 and 10 lg/disk for both compounds)

Bacillus subtilis (7.5 and 9 mm in 5 and
10 lg/disk for compound 1 whereas for
compound 2 inhibition zones are 8.0 and
12.0 mm in 5 and 10 lg/disk respectively)

[68]

Varixanthone Emericella variecolor
(sponge derived)

E. coli 12.5 lg/mlB. subtilis 12.5 lg/ml
S. aureus 12.5 lg/ml Enterococcus
faecalis 50 lg/ml

[99]

Shamixanthone,
Tajixanthone
hydrate, Terrein
(all of them)

E. variecolor (sponge derived) E. faecalis 50 lg/ml B. subtilis 50 lg/ml
S. aureus 50 lg/ml

[99]

Trichodermamide B Trichoderma virens Dipeptide S. aureus 15 lg/ml
E. faecium 15 lg/ml

[52]

Modiolides A-B Paraphaeosphaeria sp N-119
(separated from a
marine horse-mussel)

Macrolide Micrococcus luteus 16.7 lg/ml [156]

Sumiki’s acid,
acetyl Sumiki’s acid

Cladosporium herbarum
(derived from the sponge
Callyspongia aerizusa)

Furan carboxylic acid B. subtilis 5 lg/disk (7 mm zone)
S. aureus
5 lg/disk (7 mm zone)

[67]

Aspergillitine Aspergillus versicolor
(isolated from the sponge
Xestospongia exigua)

Chromone derivative B. subtilis 5 lg/disk (7 mm zone) [89]

Fusidic acid Stilbella aciculosa Steroid S. aureus (MIC=0.05 mg/ml)B. subtilis
(MIC=0.05 mg/ml)

[80]

Ascosalipyrrolidinone A Ascochyta salicorniae
(obligate)

Alkaloid Bacillus megaterium (5 mm zone
inhibition in a 50 lg/filter disk)

[123]

Phomadecalins A–D,
Phomadecalin A, B, D

Phoma sp (isolated
from the stromata
of Hypoxylon sp)

B. subtilis 200 lg/disk (18, 12, 10, 9 mm
zones respectively)S. aureus 200 lg/disk
(10, 8, 8 mm zones respectively)

[24]

CJ-17665 (I) Aspergillus ochraceus Diketopiperazine
& N-indole

S. aureus 12.5 lg/mlS. pyogenes
12.5 lg/ml E. faecalis 25 lg/ml

[151]

Siccayne Halocyphina villosa Inhibits gram-positive bacteria
at concentrations of 10
approximately50 lg/ml

[87]

7-deacetoxyyanuthone A Penicillium sp. polyoxygenated
farnesylcyclohexenones

In vitro activity against methicillin and
multidrug resistant S. aureus 50 lg/ml

[85]

8-chloro-9-hydroxy-8,
9-deoxyasperlactone
(1) 9-chloro-8-hydroxy-8,
9-deoxyasperlactone
(2) 9-chloro-8-hydroxy-8,
9-deoxyaspyrone (3)

Aspergillus ostianus Chlorinated compounds Compound 1 inhibited
the growth of Ruegeria
atlantica at 5 lg/disc
(Inhibition zone 12.7 mm)
while 2 & 3 inhibited at 25 lg/disc (10.1 and
10.5 mm, respectively)

[118]

Ascochital Kirschsteiniothelia
maritima

Aromatic aldehdye Potent activity against B. subtilis 500 ng/ml [22]

Enniatin B Fusarium sp. Cyclodepsipeptide Enniatin B exhibited antibiotic activity
against S. aureus and vancomycin
resistant enterococci
VRE788 with inhibition zones of 8 and 9 mm
respectively (2.5 lg/ml)

[70]

Halorosellinic acid,
Phenyl lactone

Halorosellinia oceanica Sesterterpene, Lactone Weak antimycobacterial acitivity against
Mycobacterium tuberculosis
H37Ra (MIC=200 lg/ml)

Active against M. tuberculosis
(MIC=200 lg/ml)

[26][27]

Seragikinone A Unidentified marine-derived
fungus

Anthracycline related
pentacyclic compound

Modest antibacterial activity
against S. aureus (10 lg/ml),
M. luteus (20 lg/ml),
Corynebacterium xerosis (20 lg/ml) and
B. subtilis (41 lg/ml)

[145]

Neomangicol B Fusarium sp. Sesterterpenes Antibacterial activity against B. subtilis
(50 lg/disk)

[131]

2-(hydroxymethyl furan) Coniothyrium sp (isolated from
the sponge Ectyplasia perox)

Inhibits B. megaterium at 50 lg/disk [62]
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inhibition of topoisomerase catalyzed DNA relaxation,
DNA-binding and covalent complex formation
(IC50=124 lM) [60]. The isolation and identification of
this metabolite is particularly significant, because MCV
may cause severe lesions in AIDS patients [105].

A series of novel linear peptides Halovirs A–E iso-
lated from the marine fungus Scytidium sp. have shown
potent antiviral activity against HSVs 1 and 2. The ED50

values (1 h duration) for Halovirs A, B, C, D, E were
1.1, 3.5, 2.2, 2.0 and 3.1 lM respectively. In addition,
halovir A was also tested for the inhibition of HSV 2.
Halovir A was determined to equally inhibit replication
of HSV-1 and HSV-2 with an ED50 value of 280 nM in a
standard plaque reduction assay [137]. The mode of
action is still not clear; however it is presumed that
halovirs render HSV non-infectious by possible mem-
brane destabilization [137]. An extensive biological
evaluation is required to fully assess the potential of the
halovirs as antiviral agents. Additional tests against
viruses like HIV, human cytomegalovirus (HCMV) are
required to explore the specificity of the observed
activity of this particular class of compound [137].

Stachyflin, a novel terpenoid isolated from the fungus
Stachybotrys sp. RF-7260 showed in vitro antiviral

activity against influenza A virus (H1N1) with an IC50

value of 0.003 lM, which is significantly better than
other antivirals such as amantadine and zanamivir [108].
Yagi et al. [166] have studied the antivirals, stachyflin
and its derivatives to improve their reduced in vivo
activity after oral administration by chemical modifica-
tion and some vehicles. Stachyflin, with a pentacyclic
moiety includes a novel cis-fused decalin and its antiviral
activity is mediated through the inhibition of fusion
between the viral envelope and the host cell membrane.
Such activity is thought to be unique among antiviral
compounds [9].

Metabolites showing antiprotozoal activities

Parasitic diseases cause high rates of fatality worldwide
[72, 132, 148]. According to the World Health Organi-
sation (see http://www.who.int/infectious-disease-
report/pages/ch3text.html) 100 million of people in the
developing countries are affected by infectious diseases.
Parasitic diseases like malaria, sleeping sickness, chagas
disease are causing havoc in parts of Africa, Asia and
South America. The WHO estimates that 55 million

Fig. 1 Chemical structures of metabolites from marine derived fungi showing antibacterial properties
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people in 36 countries along Sub Saharan Africa are
threatened by the deadly sleeping sickness, whereas in
Latin America up to 18 million are infected with the
Chagas disease. In this section, we focus on the natural
products from marine fungi that have shown promising
anti-protozoal activities against strains of Plasmodium
sp. and Trypanosoma sp.

Malaria is a serious health issue in parts of the
African continent and also in South-east Asia and South
America [21, 109, 119]. Most of the malaria cases are
caused by the parasite Plasmodium falciparum [109]
transmitted by the Anopheles mosquito. There is an
urgent need to develop drugs from natural products to
stop the malaria protozoan which are increasingly
becoming resistant to drugs like chloroquine, quinine,
pyrimethamine, etc [55]. Although not from marine
fungal sources, some headway is being made, however,
in plant derived natural products for this purpose by
Keasling and colleagues at The University of California
Berkeley (http://www.berkeley.edu/news/media/releases/
2004/12/13_gates.shtml). At this time it is unknown
which will be the most effective source.

A series of compounds belonging to different classes
of unusual irregular terpenoids have been isolated from
the algicolous marine fungus Drechslera dematioidea
found in the inner tissue of the marine alga Liagora
viscida. Helminthosporol, Isocochlioquinone A, Coch-
lioquinone B, Drechslerine E and G have been found to
inhibit the growth of malaria-causing protozoan of
P. falciparum to a significant extent (IC50

S £ 5.1 lg/ml)
[124].

Aigialomycin D, a resorcyclic macrolide and
Hypothemycin isolated from the mangrove fungus
Aigialus parvus BCC 5311 showed in vitro antimalarial
activity against P. falciparum with IC50 values of 2.2 and
6.6 lg/ml respectively [66] (Fig. 2).

Ascosalipyrrolidinone A, an unusual tetramic acid
metabolite has shown a significant level of antiplasmo-
dial activities against two strains of P. falciparum,
namely K1 (resistant to chloroquinone and pyrimeth-
amine) and NF54. This compound has been isolated
from the obligate marine fungus Ascochyta salicorniae
found in association with a marine green alga Ulva sp.
[123] (IC50d=736 ng/ml for K1, 378 ng/ml for NF54)
(Fig. 2).

Four metabolites isolated from the marine fungus
Halorosellinia oceanica BCC 5149, namely Cytochalasin
Q, 5-carboxymellein, halorosellinic acid (an ophoobo-
lane sesterterpene) along with its acetonide derivative
showed moderate antimalarial activity against the par-
asite P. falciparum (K1, multidrug resistant strain). The
IC50 values were 17, 4, 13 and 19 lg/ml respectively [26]
(Fig. 2).

Trypanosoma cruzi and Trypanosoma brucei are the
causal agents of South American Chagas disease and
sleeping sickness disease respectively. Chemotherapy
remains the only way to control this disease [13]. Some
of the drugs are only effective during the early stages of
the disease [14, 146]. There is a need to look at the

diverse marine natural products which can be useful for
clinical trials and development of new drugs which will
be different from the current drugs in terms of mecha-
nism of action and structures [13].

Ascosalipyrrolidinone A isolated from the obligate
marine fungus A. salicorniae has shown significant
activity against the haemoflagellate T. cruzi and
T. brucei subsp. rhodesiense with an MIC of 1.1 and
30 lg/ml respectively [123]. The limitation for further
development with ascosalipyrrolidinone is because of the
level of cytotoxicity against myoblast cells [123].

Antifungal compounds

Several compounds frommarine fungi have been screened
for antifungal activities, and a number of compounds have
been characterised with regard to their antifungal activi-
ties and chemical structures. There has been a sharp
increase in fungal infections among patients suffering
from HIV, receiving cancer and immuno-therapy etc [7,
12, 84]. As a result, compounds from marine fungi
could be used for further clinical trials and drug devel-
opment. Compounds like Hypoxysordarin, isolated from
the facultative marine fungus Hypoxylon croceum and

Fig. 2 Chemical structures of compounds isolated from marine
fungi showing antiprotozoan activities
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1-Hydroxy-6-methyl-8-(hydroxymethy) xanthone isolated
from the Ulocladium botrytis have shown potent antifun-
gal activities [28, 63]. In the following section, some of
these natural products from marine fungi showing anti-
fungal activities have been elaborated.

A new antifungal antibiotic, YM-202204, was found
in the culture broth of marine fungus Phoma sp. Q60596
[113]. The structure was determined as a new lactone
compound. The compound exhibited potent antifungal
activity against Candida albicans, Cryptococcus neofor-
mans and Aspergillus fumigatus, and also inhibited gly-
cosyl-phosphatidyl-inositol (GPI)-anchoring in yeast
cells [113]. Also another compound, YM-215343 found
in the culture extract of Phoma sp. QN04621 have shown
antifungal activity against the pathogenic fungi,
C. albicans, C. neoformans and Aspergillus fumigatus
with MIC values of 2–16 lg/ml (approximately) [144].

Keisslone, a metabolite isolated from the marine fil-
amentous fungus Keissleriella sp. has shown inhibitory
activities against the human pathogenic fungi C. albi-
cans, Trichophyton rubrum and Aspergillus niger with
MICs of 50, 70, 40 lg/ml respectively [92].

Trichodermamide B, a dipeptide based compound
isolated from the marine fungus Trichoderma virens have
shown antifungal activity towards amphoterocin resis-
tant C. albicans with MIC value of 15 lg/ml [52].

Some further compounds with antifungal activities
and chemical structures have been also elaborated in
Table 2 and Fig. 3 respectively.

Discussion

Some of these metabolites with potential clinical
importance could be produced in bulk by total or
semi-synthetic pathways, through implementation of
fermentation technologies and using (post) genomic
technologies in which biosynthetic gene clusters are
cloned and expressed in vector systems [138]. Salomon
et al. [138] have suggested that most of the secondary
metabolites originate from polyketide synthase (PKS)
and nonribosomal peptide synthetase (NRPS) pathways.
Little is known about the biosynthetic gene clusters that
are involved in the production of these secondary
metabolites (as described above) in marine fungi.
Authors like Martin [102, 103] have mentioned that
NRPSs, a group of giant multidomain enzymes are
responsible for the biosynthesis of important ß-lactam-
containing peptide antibiotics in terrestrial fungi. Anti-
biotics like the Penicillins, Vancomycin, Cephalosporins
and Cephamycins produced by terrestrial fungi have
been found to be synthesised by the NRPSs domain
[4, 11, 41, 97, 101, 104]. Compounds produced by the
NRPSs pathway are generally non-proteinogenic,
branched, contain D-amino acids and are usually cyclic
in structure [138]. Generally peptide metabolites pro-
duced by NRPS pathways display a variety of activities
and are extremely important as pharmaceuticals [111,
150, 159]. Kim et al. [71] have identified genes
involved in b-lactam biosynthesis in the marine fungus

Table 2 Antifungal compounds from marine fungi

Metabolite Source Class of compound Activity MIC Reference

Xestodecalactone B Penicillium cf. montanense
(derived from the sponge
X. exigua)

Xestodecalactone B
showed 25, 12, and 7 mm
zones of inhibition against
Candida albicans at 100, 50
and 20 lmol respectively

[45]

Seragikinone A Unidentified marine fungus
(derived from the
rhodophyte Ceratodictyon
spongiosum)

Anthracycline related
pentacyclic compound

Weak antifungal activity against
C. albicans (MIC=83 ll)

[145]

Modiolides A-B Paraphaeosphaeria sp Macrolide Neurospora crassa 33.3 lg/ml [156]
Ascosalipyrrolidinone A
2,3-Dihydro-2-hydroxy-2,
4-dimethyl-5-trans-
propenyfuran-3-one

Ascochyta salicorniae Alkaloid Mycotypha microsporum (4 mm
zone inhibition at a concentration
of 50 lg/disk)Microbotryum
violaceum (2 mm zone inhibition
at a concentration of 50 lg/disk)

M. violaceum (1 mm zone inhibition,
50 lg/disk)Eurotium repens
(2 mm zone inhibition)

[123]

3,6,8-trihydroxy-3-[3,
5-dimethyl-2-oxo-3
(E)-heptenyl]-2,
3-dihydronaphthalen-
1(4H)-one

Keissleriella sp. YS4108 Inhibits C. albicans, T. rubrum and
A. niger with MIC values of 40,
20, 80 lg/ml, respectively

[90]

Zopfiellamides A and B Zopfiella latipes Pyrrolidinone
derivative

Inhibits Nematospora coryli and
Saccharomyces cerevisiae with
MIC values starting at 2 lg/ml

[38]

Microsphaeropsin Microsphaeropsis sp (derived from
he sponge Myxilla incrustans)

Eremophilane
derivative

Antifungal activity against Ustilago
violacea and Mycotypha microspora
at 50 lg level

[61]
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Kallichroma tethys. Schmitt et al. [140] have reported
that the winged helix transcription factor CPCR1 is
involved in regulation of b-lactam biosynthesis (Ceph-
alosporin-C biosynthesis) in the filamentous fungus
Acremonium chrysogenum.

Toyomasu et al. [154] have cloned the gene cluster in
Phoma betae which are responsible for the synthesis of
diterpene Aphidicolin, a specific inhibitor of DNA poly-
merase a. They identified six ORFs namely PbGGS,
ACS (Aphidicolan-16b-ol synthase), PbP450-1, PbP450-2,
PbTP and PbTF using genome walking. The identification
of the biosynthetic gene cluster in fungal terpenoids is
thought to be rare like the polyketides [154].

Polyketides are a diverse group of metabolites that
are produced by modular PKSs system through the
sequential condensation of small carboxylic acids in
eukaryotic organisms including fungi [58]. In fungi,
PKSs consist of a single, giant protein that uses the same
domain to build up the polyketides [138]. Researchers
have shown the presence of 16 modular PKS/NRPS
clusters in the genome of the marine cyanobacterium
Nostoc punctiforme [138]. Marine actinomycetes are
another group of organism where the PKS and NRPS
biosynthetic gene clusters are responsible for the pro-
duction of unique metabolites [83, 126].

As mentioned earlier, the other possible route for
the production of these metabolites could be via total
or semi-synthetic pathways. There are numerous
examples for the production of these secondary
metabolites as discussed above using chemical synthetic
routes. Corollosporine, a phthalide derivative and an

antibacterial metabolite isolated from the marine fun-
gus Corollospora maritima [88] have been synthesised
chemically using 3-hydroxyphthalic or 2-methoxyben-
zoic acid as the starting material [122]. Cephalosporin
derivatives synthesised chemically by N-acylation of
7-aminocephalosporanic acid with substituted N-pyrr-
olylcarboxylic acids via mixed anhydrides have shown
potent antibacterial activities against gram positive
micro-organisms [20]. Nakatani et al. [116] have syn-
thesised Stachyflin, a potent anti-viral agent through
enantioselective synthesis of the tetracyclic core
structure. The synthetic method involves a BF(3) ·
Et(2)O-induced domino epoxide-opening/rearrange-
ment/cyclization reaction step. Gu et al. [56] have
reported the solid phase synthesis of the antiviral pep-
tide Sansalvamide A using phenylalanine silane resin.
Lee and Silverman [81] have synthesised Sansalvamide
using a side-chain-tethered phenylalanine building
block. Geng and Danishefsky [54] have reported the
synthesis of the antiplasmodial antimacrolide Aigialo-
mycin D, using a disiloxydiene and a 14-membered
‘‘ynolide’’ by ring-forming olefin metathesis.

The future

There has been an explosion of interest in recent years
into post-genomics technologies after the sequencing of
the genomes of many organisms. Currently (April 2005)
according to the genomes online database (GOLD)
(http://www.genomesonline.org/ and Bernal et al. [18])
there are 1,421 genome projects, broken down into 261
published complete genomes, 669 on-going prokaryotic
genome sequencing projects, and 489 (including 12
chromosomes) ongoing eukaryotic genome projects. Of
the completed genome projects, 33 are of eukaryotes,
and of these 11 are fungal (representing 33.3% of pub-
lished genomes). Interestingly, of these 11 published
genomes, only one appears to be from fungal organisms
of marine origin [Debaryomyces hansenii, sequenced by
INRA/Genoscope (in draft, see also below)]. With
regards to on-going genome projects, 73 of these are
fungal genome projects (representing 8% of the total
on-going publicly advertised genome projects) thus
showing a strengthening interest from the genomics
community. However, at least from the natural products
producers discussed in this paper, no genomes have been
sequenced as mentioned above, nor are any appearing to
be (on GOLD). However as a partial genomics lead, some
examples from the same genus are being sequenced:
Trichoderma (At North Carolina State), Penicillium (at
the Beijing Genomics Institute) and Fusarium (at NCBI/
Broad Institute, USDA Cereal Disease Laboratory and
NCBI/University of Oklahoma). Lépingle et al. [96]
have also explored the genome of the marine, osmo- and
halo-tolerant yeast D. hansenii var. hansenii by analyzing
2,830 random sequence tags (RSTs).

With regard to post-genomic work on fungi, obvi-
ously the most well studied organism is Saccharomyces

Fig. 3 Chemical structures of secondary metabolites from fungi
showing promising antifungal activities
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cerevisiae. S. cerevisiae is an important organism, as it
has been used for centuries as a tool for production of,
for example, foods (bread) and beverages (wine, beer
etc). One of the perceived fields of massive future
exploitation of genetic engineering and bioinformatics in
the fine chemical and pharmaceuticals industry is the
optimisation of bioreactor production of target metab-
olites (products). S. cerevisiae is likely to be an impor-
tant organism for this additional exploitation, due to the
wealth of knowledge and demonstrable industrial
exploitation, and it is through metabolic engineering
that this exploitation will occur. Metabolic engineering
can be defined as ‘‘application of recombinant DNA
methods to restructure metabolic networks which can
improve production of metabolite and protein products
by altering pathway distributions and rates’’ [2]. This is
an important field, and the strategies/techniques have
been already applied widely (and continue to grow) in
S. cerevisiae for changing yields, product specificity and
for heterologous protein production etc [3]. It seems
likely that due to this systems biological level under-
standing of S. cerevisiae, then it may be an ideal choice
for incorporation of interesting genes from marine fungi
for products generation [57].

The diversity of the natural products from marine
fungi clearly demonstrates that there are potentials for
transferring some of these compounds into clinical trials
for future development of anti-infective drugs. One of
the challenges in future will be the large scale production
of these compounds to meet the demand for clinical
trials and drug development. Many researchers believe
that some form of combinatorial genetic and metabolic
engineering will be the future solution for commercial
production of these compounds (see Bailey [8]). Inte-
gration between combinatorial biochemistry and com-
puter-based molecular modelling designs [33] along with
postgenomic technologies could be used for sustainable
production of these metabolites. Already some of the
marine metabolites being tested clinically are being
produced either through aquaculture (e.g. compounds
like Bryostatin, ET-743), chemical synthesis (com-
pounds like Dolastatin, Ziconotide, Halichondrin B
derivative, etc) or by fermentation process (Thiocora-
line) [112]. One successful example is the chemical syn-
thesis of Corollosporine, an antibacterial metabolite
from the marine fungus C. maritima [122]. However
chemical synthesis may be a solution for some com-
pounds but it could economically non viable for other
compounds.

Metabolic engineering has the potential to be used for
large scale production of these compounds using ratio-
nale biochemical designs. There are reports of imple-
mentation of metabolic engineering for production of
novel sesterterpenoid from the marine fungi Fusarium
heterosporum and Aspergillus versicolor ([162], see also
http://www.hnei.hawaii.edu/template.asp?userID=61).
Yanai et al. [167] have engineered the metabolic
biosynthetic pathway of PF1022A, a cyclooctadepsi-
peptide possessing strong anthelmintic properties in the

filamentous fungus Rosellinia sp. PF1022 for the
synthesis of compounds with improved anthelminthic
activities. Wang and Keasling [160] have expressed the
1658-bp region of the HMG1 gene encoding the cata-
lytic domain (cHMG1) of 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase of S. cerevisiae in
the filamentous fungus Neurospora crassa and found an
increase in the production of carotenoids, Lycopene and
Neurosporaxanthin. Du et al. [44] have proposed the
idea of engineering hybrid peptide-polyketide biosyn-
thetic pathways for making novel ‘‘unnatural’’ natural
products because of the structural and catalytic simi-
larities between modular NRPS and PKS.

Large scale cultivation of marine fungi using biore-
actor technology or by other means will be also essential
for steady supply of natural products in the marine based
drug market. Lorenz and Molitoris [93] have described
the use of high pressure for cultivation of marine fungi.
Scientists at the University of Kaiserslautern have used
20–100 l scale up for cultivation of obligate marine fungi
(see http://www.uni-kl.de/biotech). Selbmann et al. [143]
have conducted a study on the production of b-glucan
production by the fungus Botryosphaeria rhodina
DABAC-P82 in different bench top bioreactors, and
have found that production of b-glucan is technically
feasible. Cruz et al. [35] have reported higher production
of the antibiotic, Cephalopsporin C by using immobilised
cells of Cephalosporium acremonium ATCC 48272 in a
repeated batch tower bioreactor. Pinheiro et al. [128]
have used air pressure as an optimization parameter of
b-galactosidase production in high-density cell cultures
of Kluyveromyces marxianus CBS 7894 strains. Mandwal
et al. [100] have reported high yields of L-phenylacetyl
carbinol by immobilizing cells of S. cerevisiae in a stirred
tank reactor. There is also a report of higher production
of an antibiotic, Patulin (increase of up to 35%) using
immobilised Penicillium urticae in a 3-phase fluidised bed
reactor [17]. Papagianni et al. [125] have compared the
citric acid fermentation process by A. niger in tubular
loop bioreactor and stirred tank bioreactor (10 and 200 l
capacity). It appears that the loop reactor simulates the
corresponding stirred tank representing a valuable tool
in scaling up and scaling down of fermentation process.
Kundu et al. [78] have reported co-immobilization of
whole cell fungus, C. acremonium and alga, Chlorella
pyrenoidosa to increase the oxygen transfer rate in a
packed bed bioreactor for continuous production of
Cephalosporin-C.

Fermentation processes have gained considerable
importance in the last few years for commercial pro-
duction of these metabolites [40]. Solid state fermenta-
tion (SSF) has been used widely for the production of
biologically active secondary metabolites from fungi [10,
15, 65, 133]. Barrios-Gonzalez et al. [16] have shown that
SSF technology could be applied to produce high
quantity of b-lactam antibiotics like penicillin in a short
time period. Ramana Murthy et al. [130] have also
produced Cyclosporin A, an antifungal peptide under
SSF conditions, using a high yielding mutant of the
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fungus Tolypocladium inflatum. Coniosetin, a tetrameric
acid antibiotic was found to be produced by the fungus
Coniochaeta ellipsoida only through SSF [142].

Combinatorial biosynthesis involving introduction of
novel biosynthesis genes into micro-organisms will result
in the synthesis of the novel metabolites due to the effect
of new enzymes on the metabolic pathways [110]. Some
authors have even suggested reverse engineering of
biological strains for enhanced production of pharma-
ceutically important compounds [59, 94].

It is clear that the marine environment will play a
vital role in the future development and trials of anti-
infective drugs. Efforts are still needed in terms of large
scale production and exploitation through metabolic
engineering and postgenomic technologies for future
supply of these natural products from the marine envi-
ronment.
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96. Lépingle A, Casaregola S, Neuvéglise C, Bon E, Nguyen HV,
Artiguenave F, Wincker P, Gaillardin C (2000) Genomic
Exploration of the Hemiascomycetous Yeasts:14. Debary-
omyces hansenii var. hansenii. FEBS Lett 487:82–86

97. MacCabe AP, Riach MBR, Unkles SE, Kinghorn JR (1990)
The Aspergillus nidulans npeA locis consists of three

contiguous genes required for penicillin biosynthesis. EMBO
J 9:279–287

98. Malakoff D (1997) Extinction on the high seas. Science
277:486–488

99. Malstrøm J, Christophersen C, Barrero AF, Oltra JE, Justicia
J, Rosales A (2002) Bioactive metabolites from a marine de-
rived strain of the fungus Emericella variecolor. J Nat Prod
65:364–367

100. Mandwal AK, Tripathi CK, Trivedi PD, Joshi AK, Agarwal
SC, Bihari V (2004) Production of L-phenylacetyl carbinol by
immobilized cells of Saccharomyces cerevisiae. Biotechnol Lett
26:217–221

101. Mankelow DP, Neilan BA (2000) Non-ribosomal peptide
antibiotics. Expert Opin Ther Patents 10:1583–1591

102. Martı́n JF (1998) New aspects of genes and enzymes for ß-
lactam antibiotic biosynthesis. Appl Microbiol Biotechnol
50:1–15

103. Martı́n JF (2000) Alpha-aminoadipyl-cysteinyl-valine syn-
thetases in beta-lactam producing organisms. From Abra-
ham’s discoveries to novel concepts of non-ribosomal peptide
synthesis. J Antibiot 53:1008–1021

104. Mathison L, Soliday C, Stpean T, Aldrich T, Rambosek J
(1993) Cloning and characterization, and use in strain
improvement of the Cephalosporium acremonium gene cefG
encoding acetyl transferase. Curr Genet 23:33–41

105. Mayer AM, Hamann MT (2002) Marine pharmacology in
1999: compounds with antibacterial, anticoagulant, antifun-
gal, anthelmintic, anti-inflammatory, antiplatelet, antiproto-
zoal and antiviral activities affecting the cardiovascular,
endocrine, immune and nervous systems, and other miscella-
neous mechanisms of action. Comp Biochem Physiol C Tox-
icol Pharmacol 132:315–339

106. Mayer AM, Hamann MT (2004) Marine pharmacology in
2000: marine compounds with antibacterial, anticoagulant,
antifungal, anti-inflammatory, antimalarial, antiplatelet, an-
tituberculosis, and antiviral activities; affecting the cardio-
vascular, immune, and nervous systems and other
miscellaneous mechanisms of action. Mar Biotechnol 6:37–52

107. Mehta AS, Gu B, Conyers B, Ouzounov S, Wang L, Moriarty
RM, Dwek RA, Block TM (2004) alpha-Galactosylceramide
and novel synthetic glycolipids directly induce the innate host
defense pathway and have direct activity against hepatitis B
and C viruses. Antimicrob Agents Chemother 48:2085–2090

108. Minagawa K, Kouzuki S, Yoshimoto J, Kawamura Y, Tani
H, Iwata T, Terui Y, Nakai H, Yagi S, Hattori N, Fujiwara T,
Kamigauchi T (2002) Stachyflin and acetylstachyflin, novel
anti-influenza A virus substances, produced by Stachybotrys
sp. RF-7260. I. Isolation, structure elucidation and biological
activities. J Antibiot (Tokyo) 55(2):155–164

109. Mishra SK, Satpathy SK, Mohanty S (1999) Survey of ma-
laria treatment and deaths. Bull World Health Organ 77:1020

110. Moore BS, Piel J (2000) Engineering biodiversity with type II
polyketide synthase genes. Antonie van Leeuwenhoek 78:391–
398

111. Mootz HD, Schwarzer D, Marahiel MA (2002) Ways of
assembling complex natural products on modular nonribos-
omal peptide synthetases. Chembiochem 3:490–504

112. Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE,
Li SX, Battershill CN, Duckworth AR (1999) The discovery
and development of marine compounds with pharmaceutical
potential. J Biotechnol 70:15–25

113. Nagai K, Kamigiri K, Matsumoto H, Kawano Y, Yamaoka
M, Shimoi H, Watanabe M, Suzuki K (2002) YM-202204, a
new antifungal antibiotic produced by marine fungus Phoma
sp. J Antibiot (Tokyo) 55:1036–1041

114. Nagaraju U, Bhat G, Kuruvila M, Pai GS, Jayalakshmi, Babu
RP (2004) Methicillin-resistant Staphylococcus aureus in
community-acquired pyoderma. Int J Dermatol 43:412–414

115. Nakamura H, Takita T, Umezawa H, Kunishima M, Na-
kayama Y (1974) Letter: absolute configuration of coriolin, a
sesquiterpene antibiotic from Coriolus consors. J Antibiot
(Tokyo) 27:301–302

335



116. Nakatani M, Nakamura M, Suzuki A, Inoue M, Katoh T
(2002) A new strategy toward the total synthesis of stachyflin,
a potent anti-influenza A virus agent: concise route to the
tetracyclic core structure. Org Lett 4:4483–4486

117. Namikoshi M, Kobayashi H, Yoshimoto T, Meguro S, Ak-
ano K (2000) Isolation and characterization of bioactive
metabolites from marine-derived filamentous fungi collected
from tropical and sub-tropical coral reefs. Chem Pharm Bull
(Tokyo) 48:1452–1457

118. Namikoshi M, Negishi R, Nagai H, Dmitrenok A, Kobayashi
H (2003) Three new chlorine containing antibiotics from a
marine-derived fungus Aspergillus ostianus collected in Po-
hnpei. J Antibiot (Tokyo) 56:755–761

119. Ndyomugyenyi R, Magnussen P (2004) Trends in malaria-
attributable morbidity and mortality among young children
admitted to Ugandan hospitals, for the period 1990–2001.
Ann Trop Med Parasitol 98:315–327

120. Neu HC (1992) The crisis in antibiotic resistance. Science
257:1064–1073

121. Nielsen J, Nielsen PH, Frisvad JC (1999) Fungal depside,
guisinol, from a marine derived strain of Emericella unguis.
Phytochemistry 50:263–265

122. Ohzeki T, Mori K (2001) Synthesis of Corollosporine, an
antibacterial metabolite of the marine fungus Corollospora
maritima. Biosci Biotechnol Biochem 65:172–175

123. Osterhage C, Kaminsky R, König GM, Wright AD (2000)
Ascosalipyrrolidinone A, an antimicrobial alkaloid, from the
obligate marine fungus Ascochyta salicorniae. J Org Chem
65:6412–6417

124. Osterhage C, König GM, Höller U, Wright AD (2002) Rare
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